Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1076-1088, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658150

RESUMEN

Flavin-containing monooxygenase (FMO) is the key enzyme in the biosynthesis pathway of CSOs with sulfur oxidation. In order to explore the molecular regulatory mechanism of FMO in the synthesis of onion CSOs, based on transcriptome database and phylogenetic analysis, one AcFMO gene that may be involved in alliin synthesis was obtained, the AcFMO had a cDNA of 1 374 bp and encoded 457 amino acids, which was evolutionarily closest to the AsFMO of garlic. Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) indicated that AcFMO was the highest in the flowers and the lowest in the leaf sheaths. The results of subcellular localization showed that the AcFMO gene product was widely distributed throughout the cell A yeast expression vector was constructed, and the AcFMO gene was ecotopically overexpressed in yeast to further study the enzyme function in vitro and could catalyze the synthesis of alliin by S-allyl-l-cysteine. In summary, the cloning and functional identification of AcFMO have important reference value for understanding the biosynthesis of CSOs in onions.


Asunto(s)
Clonación Molecular , Cisteína/análogos & derivados , Cebollas , Cebollas/genética , Cebollas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cisteína/biosíntesis , Cisteína/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Secuencia de Aminoácidos , Filogenia , Disulfuros/metabolismo , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Antiviral Res ; 225: 105856, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447646

RESUMEN

Four years after its outbreak, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a global challenge for human health. At its surface, SARS-CoV-2 features numerous extensively glycosylated spike proteins. This glycan coat supports virion docking and entry into host cells and at the same time renders the virus less susceptible to neutralizing antibodies. Given the high genetic plasticity of SARS-CoV-2 and the rapid emergence of immune escape variants, targeting the glycan shield by carbohydrate-binding agents emerges as a promising strategy. However, the potential of carbohydrate-targeting reagents as viral inhibitors remains underexplored. Here, we tested seven plant-derived carbohydrate-binding proteins, called lectins, and one crude plant extract for their antiviral activity against SARS-CoV-2 in two types of human lung cells: A549 cells ectopically expressing the ACE2 receptor and Calu-3 cells. We identified three lectins and an Allium porrum (leek) extract inhibiting SARS-CoV-2 infection in both cell systems with selectivity indices (SI) ranging between >2 and >299. Amongst these, the lectin Concanavalin A (Con A) exerted the most potent and broad activity against a panel of SARS-CoV-2 variants. We used multiplex super-resolution microscopy to address lectin interactions with SARS-CoV-2 and its host cells. Notably, we discovered that Con A not only binds to SARS-CoV-2 virions and their host cells, but also causes SARS-CoV-2 aggregation. Thus, Con A exerts a dual mode-of-action comprising both, antiviral and virucidal, mechanisms. These results establish Con A and other plant lectins as candidates for COVID-19 prevention and basis for further drug development.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Cebollas/metabolismo , Concanavalina A/metabolismo , Lectinas/metabolismo , Polisacáridos , Antivirales/farmacología , Extractos Vegetales , Glicoproteína de la Espiga del Coronavirus
3.
J Bacteriol ; 206(4): e0006924, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38488356

RESUMEN

Bacteria are capable of withstanding large changes in osmolality and cytoplasmic pH, unlike eukaryotes that tightly regulate their pH and cellular composition. Previous studies on the bacterial acid stress response described a rapid, brief acidification, followed by immediate recovery. More recent experiments with better pH probes have imaged single living cells, and we now appreciate that following acid stress, bacteria maintain an acidic cytoplasm for as long as the stress remains. This acidification enables pathogens to sense a host environment and turn on their virulence programs, for example, enabling survival and replication within acidic vacuoles. Single-cell analysis identified an intracellular pH threshold of ~6.5. Acid stress reduces the internal pH below this threshold, triggering the assembly of a type III secretion system in Salmonella and the secretion of virulence factors in the host. These pathways are significant because preventing intracellular acidification of Salmonella renders it avirulent, suggesting that acid stress pathways represent a potential therapeutic target. Although we refer to the acid stress response as singular, it is actually a complex response that involves numerous two-component signaling systems, several amino acid decarboxylation systems, as well as cellular buffering systems and electron transport chain components, among others. In a recent paper in the Journal of Bacteriology, M. G. Gorelik, H. Yakhnin, A. Pannuri, A. C. Walker, C. Pourciau, D. Czyz, T. Romeo, and P. Babitzke (J Bacteriol 206:e00354-23, 2024, https://doi.org/10.1128/jb.00354-23) describe a new connection linking the carbon storage regulator CsrA to the acid stress response, highlighting new additional layers of complexity.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Cebollas/metabolismo , Proteínas Bacterianas/metabolismo , Citoplasma/metabolismo , Vacuolas/metabolismo , Salmonella/metabolismo , Ácidos/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Escherichia coli/metabolismo
4.
Plant Physiol Biochem ; 206: 108300, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38157835

RESUMEN

Cryptochromes (CRYs), as blue-light photoreceptors, play a crucial role in regulating flowering time and hypocotyl and cotyledon development. Their physiological functions have been extensively studied in various plant species. However, research on onions remains limited. In this study, we identified AcCRY1 and conducted preliminary investigations into its function. Our results demonstrate that AcCRY1 possesses a conserved domain typical of cryptochromes with high homology to those found in monocots. Furthermore, we examined the expression level of AcCRY1 in onion. The green tissues is significantly higher compared to non-green tissues, and it exhibits a significant response to blue-light induction. AcCRY1 demonstrates cytoplasmic localization under blue-light conditions, while it localizes in the nucleus during darkness, indicating a strong dependence on blue-light for its subcellular distribution. In comparison to cry1, overexpression of AcCRY1 leads to a significant shorten in seedling hypocotyl length, notable expansion of cotyledons, and acceleration of flowering time. The yeast two-hybrid experiment demonstrated the in vitro interaction between AcCRY1, AcCOP1, and AcSPA1. Additionally, BIFC analysis confirmed their interaction in Onion epidermis. Notably, under blue-light conditions, a significantly enhanced binding activity was observed compared to dark conditions. These findings establish a functional foundation for the regulatory role of AcCRY1 in important physiological processes of onion and provide initial insights into the underlying molecular mechanisms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Cebollas/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz Azul , Fotoperiodo , Luz , Factores de Transcripción/metabolismo , Hipocótilo , Regulación de la Expresión Génica de las Plantas
5.
Anim Biotechnol ; 34(9): 5067-5074, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37878368

RESUMEN

The present study aimed to assess the impact of grape seed extract (GSE), onion peel extract (OPE), and rosemary extract (ROE) on Diquat-induced growth restriction and oxidative stress in Lohmann chicks. A total of 200 chicks were randomly assigned to 5 diets: the positive control (PC) group, the negative control (NC) group, GSE group, OPE group, and ROE group. During the first 7 d of trial, compared with NC and PC groups, the GSE group enhanced average daily feed intake (ADFI). From day 8-21, diquat injection resulted in reduced growth performance, increased platelet volume distribution width (PWD), malondialdehyde (MDA) concentration, and activities of alanine aminotransferase (ALT) in chick serum; it also decreased total protein (TP), albumin (ALB), globulin (GLB) concentration, activities of superoxide dismutase (SOD) and glutathione S-transferase (GST) in chick serum; furthermore, it increased MDA concentration while decreasing GST activities in liver. The NC group exhibited lower average daily gain (ADG) than other groups. Compared with NC group, GSE group reduced ALT activities, MDA levels, and red cell distribution width (RDW), and PDW concentration; it also increased SOD, GST activities. The ROE group lowered ALT activities and MDA concentration. The OPE group decreased ALT activities, and MDA levels, RDW, and PDW concentration, and increased SOD activities of chicks. These results suggest that supplementing antioxidants in diets alleviated oxidative stress in chicks challenged by improving antioxidant capacity and liver function.


Asunto(s)
Extracto de Semillas de Uva , Rosmarinus , Animales , Extracto de Semillas de Uva/farmacología , Extracto de Semillas de Uva/metabolismo , Diquat/toxicidad , Diquat/metabolismo , Cebollas/metabolismo , Rosmarinus/metabolismo , Antioxidantes/farmacología , Dieta/veterinaria , Estrés Oxidativo , Hígado/metabolismo , Suplementos Dietéticos , Superóxido Dismutasa/metabolismo
6.
Zygote ; 31(5): 451-456, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37337719

RESUMEN

Mammalian oocytes not fertilized immediately after ovulation can undergo ageing and a rapid decline in quality. The addition of antioxidants can be an efficient approach to delaying the oocyte ageing process. Onion peel extract (OPE) contains quercetin and other flavonoids with natural antioxidant activities. In this study, we investigated the effect of OPE on mouse oocyte ageing and its mechanism of action. The oocytes were aged in vitro in M16 medium for 16 h after adding OPE at different concentrations (0, 50, 100, 200, and 500 µg/ml). The addition of 100 µg/ml OPE reduced the oocyte fragmentation rate, decreased the reactive oxygen species (ROS) level, increased the glutathione (GSH) level, and improved the mitochondrial membrane potential compared with the control group. The addition of OPE also increased the expression of SOD1, CAT, and GPX3 genes, and the caspase-3 activity in OPE-treated aged oocytes was significantly lower than that in untreated aged oocytes and similar to that in fresh oocytes. These results indicated that OPE delayed mouse oocyte ageing by reducing oxidative stress and apoptosis and enhancing mitochondrial function.


Asunto(s)
Antioxidantes , Cebollas , Femenino , Ratones , Animales , Cebollas/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Oocitos , Quercetina/farmacología , Estrés Oxidativo , Glutatión/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mamíferos
7.
Allergol Immunopathol (Madr) ; 51(3): 153-162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37169573

RESUMEN

BACKGROUND: Previous studies have shown that Allium cepa (A. cepa) has relaxant and anti-inflammatory effects. In this research, A. cepa extract was examined for its prophylactic effect on lung inflammation and oxidative stress in sensitized rats. METHODS: Total and differential white blood cell (WBC) count in the blood, serum levels of oxidant and antioxidant biomarkers, total protein (TP) in bronchoalveolar lavage fluid (BALF), and lung pathology were investigated in control group (C), sensitized group (S), and sensitized groups treated with A. cepa and dexamethasone. RESULTS: Total and most differential WBC count, TP, NO2, NO3, MDA (malondialdehyde), and lung pathological scores were increased while lymphocytes, superoxide dismutase (SOD), catalase (CAT), and thiol were decreased in sensitized animals compared to controls (p < 0.01 to p < 0.001). Treatment with all concentrations of extract significantly improved total WBC, TP, NO2, NO3, interstitial fibrosis, and emphysema compared to the S group (p < 0.05 to p < 0.001). Two higher concentrations of the extract significantly decreased neutrophil and monocyte count, malondialdehyde, bleeding and epithelial damage but increased lymphocyte, CAT, and thiol compared to the S group (p < 0.05 to p < 0.001). Dexamethasone treatment also substantially improved most measured parameters (p < 0.05 to p < 0.001), but it did not change eosinophil percentage. It was proposed that A. cepa extract could affect lung inflammation and oxidative stress in sensitized rats.


Asunto(s)
Antioxidantes , Neumonía , Ratas , Animales , Antioxidantes/farmacología , Oxidantes/metabolismo , Ovalbúmina , Cebollas/metabolismo , Dióxido de Nitrógeno/farmacología , Ratas Wistar , Neumonía/patología , Pulmón/patología , Dexametasona , Biomarcadores/metabolismo , Malondialdehído/farmacología , Compuestos de Sulfhidrilo/farmacología
8.
J Clin Invest ; 133(8)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37066881

RESUMEN

Insulin secretion by pancreatic ß cells is a dynamic and highly regulated process due to the central importance of insulin in enabling efficient utilization and storage of glucose. Multiple regulatory layers enable ß cells to adapt to acute changes in nutrient availability as well as chronic changes in metabolic demand. While epigenetic factors have been well established as regulators of chronic ß cell adaptations to insulin resistance, their role in acute adaptations in response to nutrient stimulation has been relatively unexplored. In this issue of the JCI, Wortham et al. report that short-term dynamic changes in histone modifications regulated insulin secretion and acute ß cell adaptations in response to fasting and feeding cycles. These findings highlight the importance of investigating whether other epigenetic mechanisms may contribute to acute physiologic adaptations in ß cells.


Asunto(s)
Resistencia a la Insulina , Células Secretoras de Insulina , Secreción de Insulina , Cebollas/metabolismo , Insulina/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Células Secretoras de Insulina/metabolismo
9.
Trop Anim Health Prod ; 55(3): 169, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37087514

RESUMEN

This study aimed to examine the effect of dietary supplementation of dried wild leek (Allium scorodoprasum L. subsp. rotundum) leaves on laying performance, egg traits, antioxidant status, and oxidative stability in laying hens. For this purpose, a total of 96 Lohmann White laying hens aged 22 weeks allocated into four treatment groups each containing 24 hens. Hens were fed a diet supplemented with 0 (control), 1 (WL1), 2 (WL2), and 3 (WL3) g/kg dried wild leek (DWL) leaves. During the 10-week trial, egg weight was increased and feed efficiency was improved with 2 and 3 g/kg DWL leaves. No significant differences were observed among groups for egg production, feed intake, internal and external egg quality characteristics, and egg yolk cholesterol concentration. Levels of malondialdehyde and total antioxidant-oxidant status of egg yolk were not affected from DWL supplementation. However, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity was increased and oxidative stress index was decreased in egg yolk. Superoxide dismutase enzyme activity was increased in the group of WL3, and total antioxidant status levels were increased in the groups of WL2 and WL3 in serum. DWL supplementation reduced serum cholesterol concentration significantly. No marked changes were observed in other blood parameters. In conclusion, DWL is considered to be high antioxidant supplement due to having high antioxidant capacity and important bioactive compounds. Dietary supplementation of DWL leaves at 3 g/kg could be a viable and beneficial feed additive to improve egg weight and feed efficiency, increase DPPH radical scavenging activity in egg yolk and antioxidant status of hen. Therefore, the usage of DWL leaves in the laying hen diets will be beneficial for egg producers and poultry nutritionists to produce functional eggs having low cholesterol and high antioxidants.


Asunto(s)
Allium , Antioxidantes , Animales , Femenino , Allium/metabolismo , Alimentación Animal/análisis , Antioxidantes/metabolismo , Pollos/metabolismo , Colesterol/análisis , Dieta/veterinaria , Suplementos Dietéticos , Yema de Huevo/metabolismo , Cebollas/metabolismo , Óvulo , Estrés Oxidativo
10.
Plant Physiol Biochem ; 198: 107679, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37121165

RESUMEN

Plant cuticles cover aerial organs to limit non-stomatal water loss and protect against insects and pathogens. Cuticles contain complex mixtures of fatty acid-derived waxes, with various chain lengths and diverse functional groups. To further our understanding of the chemical diversity and biosynthesis of these compounds, this study investigated leaf cuticular waxes of Welsh onion (Allium fistulosum L.) wild type and a wax-deficient mutant. Leaf waxes were extracted with chloroform, separated using thin layer chromatography (TLC), and analyzed using gas chromatography-mass spectrometry (GC-MS). The extracts contained typical wax compound classes found in nearly all plant lineages but also two uncommon compound classes. Analyses of characteristic MS fragmentation patterns followed by comparisons with synthetic standards identified the latter as very-long-chain ketones and primary ketols. The ketols were minor compounds, with chain lengths ranging from C28 to C32 and carbonyls mainly on C-18 and C-20 in wild type wax, and a C28 chain with C-16 carbonyl in the mutant. The ketones made up 70% of total wax in the wild type, consisting mainly of C31 isomers with carbonyl group on C-14 or C-16. In contrast, the mutant wax comprised only 4% ketones, with chain lengths C27 and C29 and carbonyls predominantly on C-12 and C-14, respectively. A two-carbon homolog shift between wild type and mutant was also observed in the primary alcohols (a major wax compound class), whilst alkanes exhibited a four-carbon shift. Overall, the compositional data shed light on possible biosynthetic pathways to wax ketones that can be tested in future studies.


Asunto(s)
Allium , Ceras , Ceras/metabolismo , Cebollas/genética , Cebollas/metabolismo , Allium/metabolismo , Alcoholes/análisis , Alcoholes/química , Alcoholes/metabolismo , Hojas de la Planta/metabolismo , Cetonas/análisis , Cetonas/química , Cetonas/metabolismo , Carbono/metabolismo
11.
Biochem Genet ; 61(5): 2116-2134, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36947296

RESUMEN

Flower organ development is one of the most important processes in plant life. However, onion CMS (cytoplasmic male sterility) shows an abnormal development of floral organs. The regulation of MADS-box transcription factors is important for flower development. To further understand the role of MADS-box transcription factors in the regulation of cytoplasmic male sterility onions. We cloned the full-length cDNA of five MADS-box transcription factors from the flowers of onion using RACE (rapid amplification of cDNA ends) technology. We used bioinformatics methods for sequence analysis and phylogenetic analysis. Real-time quantitative PCR was used to detect the expression patterns of these genes in different onion organs. The relative expression levels of five flower development genes were compared in CMS onions and wild onions. The results showed that the full-length cDNA sequences of the cloned MADS-box genes AcFUL, AcDEF, AcPI, AcAG, and AcSEP3 belonged to A, B, C, and E MADS-box genes, respectively. A phylogenetic tree construction analysis was performed on its sequence. Analysis of MADS-box gene expression in wild onion and CMS onion showed that the formation of CMS onion was caused by down-regulation of AcDEF, AcPI, and AcAG gene expression, up-regulation of AcSEP3 gene expression, and no correlation with AcFUL gene expression. This work laid the foundation for further study of the molecular mechanism of onion flower development and the molecular mechanism of CMS onion male sterility.


Asunto(s)
Proteínas de Dominio MADS , Cebollas , Cebollas/genética , Cebollas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Filogenia , ADN Complementario/metabolismo , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Flores/genética , Flores/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas
12.
Food Chem ; 404(Pt B): 134710, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36323042

RESUMEN

The bioconversion of onion extracts with P. acidilactici MNL5 enhances the metabolites and has a synergistic lipid-reduction impact that is beneficial for anti-obesity studies. The 48 h fermented onion extracts (FOE) demonstrated an enhanced inhibitory activity against pancreatic lipase (89.5 ± 1.25 %) as compared to the raw onion extract (ROE) (33.4 ± 0.86 %). The antioxidant properties of FOE significantly increased compared to the ROE inhibitory effect on DPPH (99.5 ± 2.40 mg vitamin C equiv./mg, DW FOE), and ABTS (104.5 ± 2.32 mg vitamin C equiv./mg, DW FOE). Based on FOE's higher antioxidant activity, UHPLC-Q-TOF-MS/MS demonstrated dramatic changes in the untargeted metabolite profile as compared to ROE. Moreover, C. elegans supplemented with FOE and quercetin exhibited an enhanced lifespan activity, lipid reduction, and decreased triglycerides. FOE can lower cholesterol and enhance quercetin to promote pancreatic lipase activity for synergistic anti-obesity effects.


Asunto(s)
Cebollas , Quercetina , Animales , Cebollas/metabolismo , Caenorhabditis elegans , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Lipasa/metabolismo , Ácido Ascórbico/metabolismo , Lípidos
13.
Int J Phytoremediation ; 25(4): 403-414, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35758213

RESUMEN

Allium cepa L. is an important medicinal and food plant enormously affected by salinity in terms of its growth and quality. This experiment investigates ameliorative potential of NO donor sodium nitroprusside (SNP) on chromosomal aberrations and physiological parameters in A. cepa L. roots exposed to salinity stress. Roots with different concentrations of NaCl (25, 50, and 100 mM) alone, and in combination with 100 µM SNP were analyzed for mitotic aberrations, DNA damage, proline, malondialdehyde (MDA) content, and ascorbate-glutathione (AsA-GSH) cycle after 120 h of salinity treatments. Results revealed that salinity stress increased chromosomal aberrations, MDA, proline accumulation, and severely hampered the AsA-GSH cycle function. The comet assay revealed a significant (p ≤ 0.05) enhancement in tail length (4.35 ± 0.05 µm) and olive tail moment (3.19 ± 0.04 µm) at 100 mM NaCl exposure. However, SNP supplementation decreased total percent abnormalities, while increased the prophase, metaphase, anaphase, and telophase indexes. Moreover, ascorbate peroxidase and glutathione reductase activities increased with AsA/DHA and GSH/GSSG ratios, respectively. Results suggest that SNP supplementation alleviates salinity stress responses by improving AsA-GSH cycle and proline accumulation. Based on present findings, NO supplementation could be recommended as a promising approach for sustainable crop production under salinity stress.


Allium cepa L. response to salt stress has been investigated but its role on chromosomal changes and DNA damage are less investigated therefore, our focus is to explore NO supplementation effects on cytological aberrations and biochemical responses in A. cepa L. roots under salinity stress.


Asunto(s)
Óxido Nítrico , Cebollas , Óxido Nítrico/metabolismo , Cebollas/metabolismo , Cloruro de Sodio/metabolismo , Plantones , Biodegradación Ambiental , Ácido Ascórbico/metabolismo , Antioxidantes/metabolismo , Glutatión/metabolismo , Estrés Salino , Daño del ADN , Prolina/metabolismo , Aberraciones Cromosómicas , Estrés Oxidativo
14.
Biol Trace Elem Res ; 201(2): 904-925, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35199287

RESUMEN

Green evolutionary products such as biologically fabricated nanoparticles (NPs) pose a hazard to aquatic creatures. Herein, biogenic silver nanoparticles (AgNPs) were synthesized by the reaction between ionic silver (AgNO3) and aqueous onion peel extract (Allium cepa L). The synthesized biogenic AgNPs were characterized with UV-Visible spectrophotometer, XRD, FT-IR, and TEM with EDS analysis; then, their toxicity was assessed on common carp fish (Cyprinus carpio) using biomarkers of haematological alterations, oxidative stress, histological changes, differential gene expression patterns, and bioaccumulation. The 96 h lethal toxicity was analysed with various concentrations (2, 4, 6, 8, and 10 mg/l) of biogenic AgNPs. Based on 96 h LC50, sublethal concentrations (1/15th, 1/10th, and 1/5th) were given to C. carpio for 28 days. At the end of experiment, the bioaccumulations of Ag content were accumulated mainly in the gills, followed by the liver and muscle. At an interval of 7 days, the haematological alterations showed significance (p < 0.05) and elevation of antioxidant defence mechanism reveals the toxicity of biogenic synthesized AgNPs. Adverse effects on oxidative stress were probably related to the histopathological damage of its vital organs like gill, liver, and muscle. Finally, the fish treated with biogenic synthesized AgNPs were significantly (p < 0.05) downregulates the oxidative stress genes such as Cu-Zn SOD, CAT, GPx1a, GST-α, CYP1A, and Nrf-2 expression patterns. The present study provides evidence of biogenic synthesized AgNPs influence on the aquatic life through induction of oxidative stress.


Asunto(s)
Carpas , Nanopartículas del Metal , Contaminantes Químicos del Agua , Animales , Cebollas/genética , Cebollas/metabolismo , Carpas/genética , Carpas/metabolismo , Plata/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Oxidativo , Agua Dulce , Branquias/metabolismo , Contaminantes Químicos del Agua/metabolismo
15.
J Nat Med ; 76(4): 803-810, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35691991

RESUMEN

S-Alk(en)ylcysteine sulfoxides (CSOs), such as methiin, alliin, and isoalliin, are health-beneficial natural products biosynthesized in the genus Allium. Here, we report the induction of multiple callus tissue lines from three Allium vegetables, onion (A. cepa), Welsh onion (A. fistulosum), and Chinese chive (A. tuberosum), and their ability to accumulate CSOs. Callus tissues were initiated and maintained in the presence of picloram and 2-isopentenyladenine as auxin and cytokinin, respectively. For all plant species tested, the callus tissues almost exclusively accumulated methiin as CSO, while the intact plants contained a substantial amount of isoalliin together with methiin. These results suggest that the cellular developmental conditions and the regulatory mechanisms required for the biosynthesis of methiin are different from those of alliin and isoalliin. The methiin content in the callus tissues of onion and Welsh onion was much higher compared to that in the intact plants, and its cellular concentration could be estimated as 1.9-21.7 mM. The activity of alliinase that degrades CSOs in the callus tissues was much lower than that of the intact plants for onion and Welsh onion, but at similar levels as in the intact plants for Chinese chive. Our findings that the callus tissues of onion and Welsh onion showed high methiin content and low alliinase activity highlighted their potential as a plant-based system for methiin production.


Asunto(s)
Allium , Productos Biológicos , Cebollas/metabolismo , Sulfóxidos
16.
Environ Toxicol Pharmacol ; 94: 103908, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35709962

RESUMEN

Accumulation of plastic materials in terrestrial systems threatens to contaminate food chains. The aim of the current study is to determine the impact of microplastics synthesized from PET plastics (control, 50, 250, 500, 750, 1000 mg/L) with respect to morphological, biochemical impact on Cicer arietinum using standardized 72 h assay and cytotoxicity study on Allium cepa root tips. The synthesized microplastics were characterized by Scanning Electron Microscope (SEM) and Fourier Transform Infrared spectroscopy (FTIR) studies. Germination studies clearly revealed that there is a sharp decrease in germination with increasing the concentration of microplastics. Both pigment and carbohydrate levels increased up to 500 mg/L concentration, although protein levels increased with increase of microplastic dose. Catalase activity also increased with increasing microplastic concentration. Finally, cytotoxicity studies revealed significant chromosomal aberration at higher dose of microplastics. Therefore, it may be concluded that the microplastics have significant biological and structural adverse effects on plant metabolism.


Asunto(s)
Cicer , Contaminantes Químicos del Agua , Cicer/metabolismo , Monitoreo del Ambiente , Microplásticos/toxicidad , Cebollas/metabolismo , Plásticos/toxicidad , Tereftalatos Polietilenos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
17.
Appl Biochem Biotechnol ; 194(10): 4836-4851, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35666379

RESUMEN

Globally, breast cancer is one of the leading invasive cancers in women. Moreover, the use of chemotherapeutic drugs for treating cancer produces toxic side effects and has even led to drug resistance. This research paper focuses on targeting three heat shock proteins belonging to 70 kDa subfamily (HSP70s), predominantly, Mortalin, Binding Immunoglobulin Protein (BiP), and Stress Inducible HSP70 (Stress Inducible Heat Shock Protein 70) involved in breast cancer malignancy using different phytocompounds of onion. Phytocompounds of onion (ligands) obtained from different literature sources and the conventional drug, Tamoxifen (standard ligand), used for treating breast cancer are docked against three HSP70s (target proteins) through molecular docking. Molecular docking helps to determine protein-ligand interactions with minimum binding affinity. A comparative analysis revealed that fourteen phytocompounds of onion have lesser binding affinity and formed more stable complexes with the target proteins compared to that of the conventional drug. This evidence can be used and confirmed further through in vitro (cell culture) and in vivo (animal models) studies, and then, these phytocompounds can be modulated efficiently as potential therapeutics for treating breast cancer with less or nearly no side effects. In Silico work represented here targets three heat shock proteins belonging to 70 kDa subfamily (HSP70s)-Mortalin, Binding Immunoglobulin Protein (BiP), and Stress Inducible HSP70 involved in breast cancer malignancy using different phytocompounds of onion to identify potential phytocompounds that can treat breast cancer with nearly no side effects.


Asunto(s)
Proteínas de Choque Térmico , Neoplasias , Animales , Femenino , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Cebollas/metabolismo , Tamoxifeno
18.
J Exp Bot ; 73(14): 4908-4922, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35552692

RESUMEN

Fructans such as inulin and levan accumulate in certain taxonomic groups of plants and are a reserve carbohydrate alternative to starch. Onion (Allium cepa L.) is a typical plant species that accumulates fructans, and it synthesizes inulin-type and inulin neoseries-type fructans in the bulb. Although genes for fructan biosynthesis in onion have been identified so far, no genes for fructan degradation had been found. In this study, phylogenetic analysis predicted that we isolated a putative vacuolar invertase gene (AcpVI1), but our functional analyses demonstrated that it encoded a fructan 1-exohydrolase (1-FEH) instead. Assessments of recombinant proteins and purified native protein showed that the protein had 1-FEH activity, hydrolyzing the ß-(2,1)-fructosyl linkage in inulin-type fructans. Interestingly, AcpVI1 had an amino acid sequence close to those of vacuolar invertases and fructosyltransferases, unlike all other FEHs previously found in plants. We showed that AcpVI1 was localized in the vacuole, as are onion fructosyltransferases Ac1-SST and Ac6G-FFT. These results indicate that fructan-synthesizing and -degrading enzymes are both localized in the vacuole. In contrast to previously reported FEHs, our data suggest that onion 1-FEH evolved from a vacuolar invertase and not from a cell wall invertase. This demonstrates that classic phylogenetic analysis on its own is insufficient to discriminate between invertases and FEHs, highlighting the importance of functional markers in the nearby active site residues.


Asunto(s)
Cebollas , beta-Fructofuranosidasa , Fructanos/metabolismo , Glicósido Hidrolasas/metabolismo , Inulina , Cebollas/genética , Cebollas/metabolismo , Filogenia , Vacuolas/metabolismo , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo
19.
Plant Foods Hum Nutr ; 77(2): 206-211, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35441311

RESUMEN

Recently, there has been renewed interest in biorefining of agricultural onion into functional products. In this study, onion vinegar (OV) are prepared by a two-stage semi-continuous fermentation method, and its content of total flavonoids (3.01 mg/mL) and polyphenols (976.76 µg/mL) is superior to other commercial vinegars. OV possesses a high radical scavenging activity and enhances the antioxidant enzyme activities in vivo, alleviating intracellular oxidative stress in Caenorhabditis elegans. Treated by OV, the 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH·), diammonium 2,2'-azino-bis (3-ethylbenzo thiazoline-6-sulfonic acid) (ABTS+·) and 2-phenyl-4,4,5,5- tetramethylimidazoline-1-oxyl 3-Oxide (PTIO·) free radicals clearance rates are 88.76, 98.76 and 90.54%, respectively in vitro. Whereas the glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) enzyme activities in C. elegans reach 271.57, 129.26, and 314.68%, respectively. Using RNAi and RT-PCR, it has been further confirmed that OV modulates transcription factor SKN-1, the nuclear factor erythroid 2-related factor 2 (Nrf2) homologous, in C. elegans, enhancing the resistance of C. elegans against sodium arsenite stress. Lifespan analysis reveals that 1 mL OV extends the maximum lifespan of the nematode to 26 days. Evidence is presented which shows that OV increases the lifespan of C. elegans by activating the SKN-1 signaling pathway. Overall, the OV is a well functional condiment, enhancing the value-added of onion.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Ácido Acético/análisis , Ácido Acético/metabolismo , Animales , Antioxidantes/análisis , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Longevidad , Cebollas/metabolismo , Estrés Oxidativo , Factores de Transcripción/metabolismo
20.
Cells ; 11(7)2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35406664

RESUMEN

Onion (Allium cepa L.) is an important bulb crop grown worldwide. Dormancy in bulbous plants is an important physiological state mainly regulated by a complex gene network that determines a stop of vegetative growth during unfavorable seasons. Limited knowledge on the molecular mechanisms that regulate dormancy in onion were available until now. Here, a comparison between uninfected and onion yellow dwarf virus (OYDV)-infected onion bulbs highlighted an altered dormancy in the virus-infected plants, causing several symptoms, such as leaf striping, growth reduction, early bulb sprouting and rooting, as well as a lower abscisic acid (ABA) level at the start of dormancy. Furthermore, by comparing three dormancy stages, almost five thousand four hundred (5390) differentially expressed genes (DEGs) were found in uninfected bulbs, while the number of DEGs was significantly reduced (1322) in OYDV-infected bulbs. Genes involved in cell wall modification, proteolysis, and hormone signaling, such as ABA, gibberellins (GAs), indole-3-acetic acid (IAA), and brassinosteroids (BRs), that have already been reported as key dormancy-related pathways, were the most enriched ones in the healthy plants. Interestingly, several transcription factors (TFs) were up-regulated in the uninfected bulbs, among them three genes belonging to the WRKY family, for the first time characterized in onion, were identified during dormancy release. The involvement of specific WRKY genes in breaking dormancy in onion was confirmed by GO enrichment and network analysis, highlighting a correlation between AcWRKY32 and genes driving plant development, cell wall modification, and division via gibberellin and auxin homeostasis, two key processes in dormancy release. Overall, we present, for the first time, a detailed molecular analysis of the dormancy process, a description of the WRKY-TF family in onion, providing a better understanding of the role played by AcWRKY32 in the bulb dormancy release. The TF co-expressed genes may represent targets for controlling the early sprouting in onion, laying the foundations for novel breeding programs to improve shelf life and reduce postharvest.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Cebollas , Ácido Abscísico/metabolismo , Redes Reguladoras de Genes , Giberelinas/metabolismo , Cebollas/genética , Cebollas/metabolismo , Potyvirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA